Roots and Weyl Groups

Yan

March 31, 2025

Contents

1	Root Decomposition and Killing Form	1
2	Root System Structure Theorem	1
3	Abstract Root Systems and Weyl Groups	2
4	Rank 2 Root Systems Examples	2

1 Root Decomposition and Killing Form

For a complex semisimple Lie algebra ${\mathfrak g}$ with Cartan subalgebra ${\mathfrak h},$ the root decomposition is

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}, \quad \mathfrak{g}_{\alpha} = \{X \mid [H, X] = \alpha(H)X, \forall H \in \mathfrak{h}\}.$$

The Killing form $B(X,Y) = \text{Tr}(\text{ad}_X \text{ad}_Y)$ is non-degenerate, inducing an isomorphism $\mathfrak{h} \cong \mathfrak{h}^*$:

 $\alpha(H) = B(H_{\alpha}, H), \quad \forall H \in \mathfrak{h}.$

For $\alpha \in \Delta$, normalize H_{α} by $\alpha(H_{\alpha}) = 2$ and select $E_{\pm \alpha} \in \mathfrak{g}_{\pm \alpha}$ satisfying

$$[E_{\alpha}, E_{-\alpha}] = H_{\alpha}, \quad B(E_{\alpha}, E_{-\alpha}) = 1,$$

forming an $\mathfrak{sl}(2)$ -triple with commutation relations:

$$[H_{\alpha}, E_{\pm\alpha}] = \pm 2E_{\pm\alpha}, \quad [E_{\alpha}, E_{-\alpha}] = H_{\alpha}.$$

2 Root System Structure Theorem

Theorem 2.1. The set of roots $\Delta \subseteq \mathfrak{h}^*$ of a complex semisimple Lie algebra \mathfrak{g} forms an abstract root system in \mathfrak{h}^* equipped with the inner product induced by the Killing form.

Proof. Since Δ is finite and spans \mathfrak{h}^* , verify root system axioms:

For $\alpha, \beta \in \Delta$, define reflection

$$\sigma_{\alpha}(\beta) = \beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha.$$

Representation theory of $\mathfrak{sl}(2)$ ensures symmetry, thus $\sigma_{\alpha}(\beta) \in \Delta$.

For multiples, finite-dimensionality and eigenvector independence imply $c\alpha \in \Delta$ only if $c = \pm 1$.

3 Abstract Root Systems and Weyl Groups

An abstract root system is a finite set $R \subset E$ satisfying:

(R1) R spans E;

(R2)
$$\frac{2(\alpha,\beta)}{(\beta,\beta)} \in \mathbb{Z};$$

(R3) reflections $s_{\alpha}(\beta) = \beta - \frac{2(\beta,\alpha)}{(\alpha,\alpha)}\alpha$ preserve R;

(R4) if $c\alpha \in R$, then $c = \pm 1$.

The Weyl group is defined as

$$W = \langle s_{\alpha} \mid \alpha \in R \rangle \subseteq O(E),$$

is finite, and stabilizes R.

4 Rank 2 Root Systems Examples

Type $A_1 \cup A_1$: Four roots $\pm \alpha, \pm \beta$ orthogonal and equal length. Weyl group:

$$W \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$$

Type A_2 : Six roots $\pm \alpha, \pm \beta, \pm (\alpha + \beta)$ forming a regular hexagon with equal length and angle 120°. Weyl group:

$$W \cong S_3.$$

Type B_2 : Eight roots $\pm \alpha, \pm \beta, \pm (\alpha + \beta), \pm (\alpha + 2\beta)$ with lengths differing by $\sqrt{2}$. Weyl group:

 $W \cong D_4$ (dihedral group of order 8).

Type G_2 : Twelve roots $\pm \alpha, \pm \beta, \pm (\alpha + \beta), \pm (2\alpha + \beta), \pm (3\alpha + \beta), \pm (3\alpha + 2\beta)$ with lengths differing by $\sqrt{3}$. Weyl group:

 $W \cong D_6$ (dihedral group of order 12).